PT9101 (ami

Extended Ranges • Voltage Divider

Absolute Linear Position to 1700 inches (4300 cm)
Stroke Range Options: 0-600 to 0-1700 inches
VLS Option To Prevent Free-Release Damage
IP68 • NEMA 6 Protection

c ϵ

GENERAL

Full Stroke Range Options (on this datasheet) $\quad 0-600$ to 0-1700 inches

Output Signal	voltage divider (potentiometer)
Accuracy	$\pm 0.10 \%$ full stroke
Repeatability	$\pm 0.02 \%$ full stroke
Resolution	essentially infinite

Measuring Cable Options stainless steel or thermoplastic
Enclosure Material powder-painted aluminum or 303 stainless steel
Sensor
plastic-hybrid precision potentiometer
Potentiometer Cycle Life
$\geq 250,000$

Maximum Retraction Acceleration
Maximum Velocity
Weight, Aluminum (Stainless Steel) Enclosure
see ordering information see ordering information

14 lbs. (28 lbs.) max.

ELECTRICAL

Input Resistance Options
$500,1 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K} \Omega$, bridge
Power Rating, Watts
2.0 at $70^{\circ} \mathrm{F}$ derated to 0 at $250^{\circ} \mathrm{F}$

Recommended Maximum Input Voltage
30 V (AC/DC)
Output Signal Change Over Full Stroke Range $94 \% \pm 4 \%$ of input voltage

ENVIRONMENTAL

Enclosure
NEMA 4/4X/6, IP 67/68
Operating Temperature
-40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$
Vibration
up to 10 g to 2000 Hz maximum

$12.5^{\prime \prime}[309 \mathrm{~mm}]$

The PT9101 is a work-horse for demanding long-range applications requiring a linear position measurements in ranges up to 1700 inches. Available with either a $500,1 \mathrm{~K}, 5 \mathrm{~K}$, or 10 K ohm potentiometer, the PT9101 operates with any basic panel meter or programmable controller.

As a member of Celesco's innovative family of NEMA 4 rated cable-extension transducers, the PT9101 offers numerous benefits. It installs in minutes, works without perfect parallel alignment, and when it's stainless-steel cable is retracted, it measures only 6 ".

Output Signal:

-- bridge circuit option available, see ordering information

Outline Drawing

(A) DIMENSION

RANGE	inches [mm]
600	$1.76[44,7]$
800	$1.58[40,1]$
1000	$1.98[50,2]$
1200	$1.98[50,2]$
1500	$1.86[47,2]$
1700	$2.11[53,6]$

DIMENSIONS ARE IN INCHES [MM]

* tolerance $=+.005-.001$ [+. $13-.03]$
tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.
$* *$ tolerance $=+.005-.005[+.13-.13]$

VLS Option - Free Release Protection

The patented Celesco Velocity Limiting System (VLS) is an option for PT9000 Series cable extension transducers that limits cable retraction to a safe 40 to 55 inches per second for the single spring option and 40 to 80 inches per second for the higher tension dual spring option.

The VLS option prevents the measuring cable from ever reaching a damaging velocity during an accidental free release. This option is ideal for mobile applications that require frequent cable disconnection and reconnection. It prevents expensive unscheduled downtime due to accidental cable mishandling or attachment failure.

How To Configure Model Number for VLS Option:
VLS 9101-

creating VLS model number (example)...

1. select PT9101 model

PT9101-1200-111-1110
2. remove "PT" from the model number
3. add^{\prime} VLS"

VLS9101-1200-111-1110

Ordering Information:

Model Number:

Sample Model Number:
PT9101-1200-111-1110

(B) range:	1200 inches
(A) enclosure:	aluminum
(B) measuring cable:	nylon-coated stainless
C cable exit:	front
(D) output signal:	500 ohm potentiometer
(F) electrical connection:	6 -pin plastic connector

Full Stroke Range:

\mathbb{B} order code:	$\mathbf{0 6 0 0}$	$\mathbf{0 8 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 2 0 0}$	$\mathbf{1 5 0 0}$	1700
full stroke range, min:	600 in.	800 in.	1000 in.	1200 in.	1500 in.	1700 in.
cable tension $(\pm 35 \%):$	27 oz.	24 oz.	20 oz.	19 oz.	18 oz.	17 oz.

Enclosure Material:

A order code
enclosure material: max. acceleration: max. velocity:

1
powder-painted aluminum
1 g
60

60 inches $/ \mathrm{sec}$.

3
303 stainless steel
.33 g

20 inches $/ \mathrm{sec}$.

Measuring Cable:

\qquad 1

2
nylon-coated stainless steel*
un-coated stainless steel*

*cable diameter: $\{$	stroke range:	0600	0800	1000	1200	1500	1700
	nylon-coated cable:	. 034 in.	. 019 in.	. 019 in.	. 019 in.	. 014 in.	. 014 in.
	un-coated cable:	. 031 in .	. 018 in.	. 018 in.	. 018 in.	. 015 in.	. 015 in.

Cable Exit:
Corder code:

Output Signals:

(1) order code:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
	$500 \mathrm{ohm}^{*}$	$1000 \mathrm{ohm}^{*}$	$5000 \mathrm{ohm*}^{*}$	$10,000 \mathrm{ohm*}$	fixed bridge	adjustable bridge $(0 \ldots 30 \mathrm{mV} / \mathrm{V})$
				${ }^{*}$ tolerance $= \pm 10 \%$	$(2 \mathrm{mV} / \mathrm{V})$	

Ordering Information (cont.):

Electrical Connection:

Notes: *-Test pressure: 100 feet [30 meters] $\mathrm{H}_{2} \mathrm{O}$ (40 PSID); Test Medium: Air; Duration: 2 hours.
**-NEMA $4 X$ applies to stainless steel enclosure only.

PT9420 (amime

Extended Ranges • $4 . . .20 \mathrm{~mA}, 0 . . .20 \mathrm{~mA}$
Absolute Linear Position to 1700 inches (4300 cm) Stroke Range Options: 0-600 to 0-1700 inches VLS Option To Prevent Free-Release Damage IP68 • NEMA 6 Protection • Hazardous Area Certification

(x) © $(\epsilon$

GENERAL

Full Stroke Range Options (on this datasheet)
0-600 to 0-1700 inches

Output Signal Options $4 . . .20 \mathrm{~mA}$ ($4 . . .20 \mathrm{~mA}$ (2 -wire) and 0... 20 mA (3-wire)
Accuracy	$\pm 0.12 \%$ full stroke
Repeatability	$\pm 0.05 \%$ full stroke
Resolution	essentially infinite
Measuring Cable	nylon-coated stainless steel
Enclosure Material powder-painted alu	powder-painted aluminum or 303 stainless steel
Sensor plastic-hy	plastic-hybrid precision potentiometer
Potentiometer Cycle Life	$\geq 250,000, \mathrm{~min}$.
Maximum Retraction Acceleration/ Velocity	celeration/Velocity see ordering information
Weight, Aluminum (Stainless Steel) Enclosure	less Steel) Enclosure $\quad 14 \mathrm{lbs} .(28 \mathrm{lbs}$.

ELECTRICAL

Input Voltage	see ordering information
Input Current	20 mA max.
Maximum Loop Resistance (Load)	(loop supply voltage -8$) / 0.020$
Circuit Protection	38 mA max.
Impedance	100 M ohms @ $100 \mathrm{VDC}, \mathrm{min}$.
Output Signal, Zero Adjust	up to 50% of full stroke range
Output Signal, Span Adjust	to 50% of factory set span

ENVIRONMENTAL

Enclosure	NEMA $4 / 4 \mathrm{X} / 6$, IP $67 / 68$
Hazardous Area Certification	see ordering information
Operating Temperature	-40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$
Vibration	up to 10 g to 2000 Hz maximum
Thermal Effects, Zero	$0.01 \% \mathrm{f.s} . /{ }^{\circ} \mathrm{F}$, max.
Thermal Effects, Span	$0.01 \% /{ }^{\circ} \mathrm{F}$, max.

10-11 Colrado Court, Hallam Victoria 3803, Australia Telephone: 61397086885
Facsimile: 61397086770
Email: idm@idminstruments.com.au
Web: www.idminstruments.com.au

$12.5^{\prime \prime}$ [309 mm]

- $5.3^{\prime \prime}$ [135 mm]

The PT9420 is a great value for demanding long-range applications requiring a 4-20 mA linear position feedback signal. Sealed to meet NEMA 4 standards, this Cable-Extension Transducer will perform even under the harshest of environmental conditions.

As a member of Celesco's innovative family of NEMA-4 rated cable-extension transducers, the PT9420 offers numerous benefits. It installs in minutes, functions properly without perfectly parallel alignment, and when its cable is retracted, it measures only 6 ".

Output Signal:

[^0]
IDM instruments

10-11 Colrado Court, Hallam Victoria 3803, Australia
Telephone: 61397086885
Facsimile: 61397086770
Email: idm@idminstruments.com.au
Web: www.idminstruments.com.au

Outline Drawing

DIMENSIONS ARE IN INCHES [MM]
tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.

(A) DIMENSION

RANGE	inches [mm]
600	$1.76[44,7]$
800	$1.58[40,1]$
1000	$1.98[50,2]$
1200	$1.98[50,2]$
1500	$1.86[47,2]$
1700	$2.11[53,6]$

Ordering Information:
10-11 Colrado Court, Hallam Victoria 3803, Australia
Telephone: 61397086885
Facsimile: 61397086770
Email: idm@idminstruments.com.au
Web: www.idminstruments.com.au

Model Number:

Sample Model Number:
PT9420-1200-111-1110
B range: 1200 inch
(4) enclosure/cable tension: aluminum
${ }^{(8)}$ measuring cable:
aluminum
nylon-coat
(C) cable exit:
(E) output signal: nylon-coated stainless
(B) electrical connection

Full Stroke Range:

\mathbb{B} order code:	$\mathbf{0 6 0 0}$	$\mathbf{0 8 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 2 0 0}$	$\mathbf{1 5 0 0}$	$\mathbf{1 7 0 0}$
full stroke range, min:	600 in.	800 in.	1000 in.	1200 in.	1500 in.	1700 in.
cable tension $(\pm 35 \%):$	27 oz.	24 oz.	20 oz.	19 oz.	18 oz.	17 oz.

Enclosure Material:

(4) order code:	$\mathbf{1}$	$\mathbf{3}$
enclosure material:	powder-painted aluminum	303 stainless steel
max. acceleration:	1 g	.33 g
max. velocity:	60 inches $/ \mathrm{sec}$.	20 inches $/ \mathrm{sec}$.

Measuring Cable:

B order code: $\frac{\mathbf{1}}{\mathbf{2}} \mathbf{\text { nylon-coated stainless steel* }}$
${ }^{*}$ cable diameter: $\left\{\begin{array}{rlllllll}\text { stroke range: } & \mathbf{0 6 0 0} & \mathbf{0 8 0 0} & \mathbf{1 0 0 0} & \mathbf{1 2 0 0} & 1500 & 1700 \\ \text { nylon-coated cable: } & .034 \mathrm{in} & .019 \mathrm{in} . & .019 \mathrm{in} . & .019 \mathrm{in} . & .014 \mathrm{in} & .014 \mathrm{in} . \\ \text { un-coated cable: } & .031 \mathrm{in} . & .018 \mathrm{in} . & .018 \mathrm{in} . & .018 \mathrm{in} . & .015 \mathrm{in} . & .015 \mathrm{in} .\end{array}\right.$

Cable Exit:

Output Signals:

Border code:	1	2	3	4	5*	6*
output signal options:	$\begin{array}{r} 4 \ldots 20 \mathrm{~mA} \\ \hline \end{array}$	$\begin{array}{r} 20 \ldots 4 \mathrm{~mA} \\ 20 \\ 4 \end{array}$	$\begin{aligned} & 0 . . .20 \mathrm{~mA} \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \ldots 0 \mathrm{~mA} \\ & 20 \end{aligned}$	$\begin{array}{r} 4 \ldots 20 \mathrm{~mA} \\ 20 \end{array}$	$\begin{aligned} & 20 \ldots .4 \mathrm{~mA} \\ & 20 \\ & \square \end{aligned}$
sensitivity: wiring configuration: input voltage: hazardous area certification:	$16 \mathrm{~mA} /$ full stroke $\pm 0.25 \%$		$20 \mathrm{~mA} /$ full stroke $\pm 0.25 \%$		$16 \mathrm{~mA} /$ full stroke $\pm 0.25 \%$	
	2 - wire		3 - wire		2 - wire	
	$8-34 \mathrm{vdc}$		14-29 vdc		14-32 vdc	
			not certified		CSA - Cenelec	
	Output Signal Ex ord	$=1=4 \ldots 20$	$4 \mathrm{~mA}=$		Hazardous Area Certific CSA Standard 22.2 Class 1 Groups A, B, C and D	Cenelec LCIE EEx ia IIc T4

Ordering Information（cont．）：

Electrical Connection：

（F）order code：	1		2		3		4	
	6－pin plastic connector w／mating plug IP 67，NEMA 4X＊＊， 6 1／2－5／16＂［14－8 mm］cable dia． 16 AWG max conductor size connector：MS3102E－14S－6P mating plug：MS3106E－14S－6S		10－ft．［3 M］ waterproof cable IP 67，NEMA 4X＊＊， 6 10 ft．$\times 0.4$－in．dia． ［ $3 \mathrm{M} \times 10 \mathrm{~mm}$ dia．］ 18 AWG，type SJTW	6－pin me w／ma IP 65 \qquad 痖崀 3／8－in．［9 m 16 AWG connector mating plug：	al connector ing plug NEMA 4 m］max cable dia． x conductor size MS3102E－14S－6P MS3106E－14S－6S		25－ft．［7．5 trumentatio IP 67，NEM	M］ n cable A 屋 dia． dia．］ elded
（B）order code：	5		6		7			
			10－ft．［3 M］ pressure tested＊ waterproof cable IP 68，NEMA 4X＊＊，6P $10 \mathrm{ft} . \times 0.4-\mathrm{in}$. dia． ［3 M x 10 mm dia．］ 18 AWG，type SJTW	$100-$ pressu waterp IP 68，N \square	［30 M］ e tested＊ oof cable 4A 4X＊＊，6P $\times 0.4$－in．dia． $\times 10 \mathrm{~mm}$ dia．］ WG，type SJTW			
	6－pin Mating Plug			Waterproof Cable		Instrumentation Cable		
	pin 2－wire A $8 \ldots 3 \mathrm{ddC}^{* * *}$ B $4 \ldots 20 \mathrm{~mA}$ out C - D case ground $0 .$.	$\begin{gathered} \text { 3-wire } \\ 14 \ldots 29 \mathrm{vdc} \\ \text { common } \\ 0 . . .20 \mathrm{~mA} \text { out } \end{gathered}$		$\begin{aligned} & \text { 2-wire } \\ & 8 \ldots 34 \mathrm{vdc}^{* * *} \\ & 4 \ldots 20 \mathrm{~mA} \text { out } \\ & \text { case ground } \end{aligned}$	$\begin{gathered} 3-\text {-wire } \\ 14 . .29 \text { vdc } \\ \text { common } \\ 0 . . .20 \mathrm{~mA} \text { out } \end{gathered}$	$\begin{gathered} \text { color code } \\ \text { RLD } \\ \text { BLACK } \\ \text { WHTIE } \\ \text { GREEN } \end{gathered}$	$\begin{gathered} \text { 2-wire } \\ \text { 8...34 vdc*** } \\ 4 \ldots 20 \mathrm{~mA} \text { out } \\ \mathrm{n} / \mathrm{a} \\ \text { case ground } \end{gathered}$	$\begin{gathered} 3-\mathrm{wire} \\ 14 . .29 \mathrm{vdc} \\ \text { common } \\ \mathrm{n} / \mathrm{a} \\ 0 . . .20 \mathrm{~mA} \text { out } \end{gathered}$

Notes： $\begin{cases}* & - \text { Test pressure：} 100 \text { feet［30 meters］} H_{2} \mathrm{O}(40 \text { PSID）；Test Medium：Air；Duration：} 2 \text { hours．} \\ *^{* *} & - \text { NEMA } 4 X \text { applies to stainless steel enclosure only．} \\ *^{* *} & -14-32 \text { VDC for hazardous area option．}\end{cases}$
－14－32 VDC for hazardous area option．

Output Signal Settings：

The output signal direction can be reversed at any time by simply changing the dip－switch settings found on the internal signal board． After the settings have been changed，adjustment of the Zero and Span trimpots will be required to precisely match signal values to the beginning and end points of the stroke．

To gain access to the signal board，remove four Allen－Head Screws and remove end cover bracket．

Caution！Do Not Remove Spring－Side End Cover
Removing spring－side end cover could cause spring to become unseated and permanently damaged．

PT9510 (amimi

Extended Ranges • 0... 5 Vdc, $0 . . .10 \mathrm{Vdc}$

Absolute Linear Position to 1700 inches (4300 cm)
Stroke Range Options: 0-600 to 0-1700 inches
VLS Option To Prevent Free-Release Damage
IP68 • NEMA 6 Protection • Hazardous Area Certification

C

GENERAL

Full Stroke Range Options (on this datasheet)	$0-600$ to $0-1700$ inches
Output Signal Options	$0 \ldots 10,0 \ldots 5,-5 \ldots+5,-10 \ldots+10$ VDC
Accuracy	$\pm 0.12 \%$ full stroke
Repeatability	$\pm 0.05 \%$ full stroke
Resolution	essentially infinite

Measuring Cable Options stainless steel or thermoplastic

Enclosure Material powder-painted aluminum or 303 stainless steel
Sensor plastic-hybrid precision potentiometer
Potentiometer Cycle Life $\quad \geq 250,000$

Maximum Retraction Acceleration	see ordering information
Maximum Velocity	see ordering information

Weight, Aluminum (Stainless Steel) Enclosure 14 lbs . (28 lbs.) max.

ELECTRICAL

Input Voltage	$14.5-40 \mathrm{VDC}$
(10.5-40VDC for $0-5$ volt output)	
Input Current	10 mA maximum
Output Impedance	1000 ohms
Maximum Output Load	5000 ohms
Output Signal, Zero Adjust	up to 50% of full stroke range
Output Signal, Span Adjust	to 50% of factory set span

ENVIRONMENTAL

Enclosure	NEMA $4 / 4 \mathrm{X} / 6$, IP $67 / 68$
Operating Temperature	-40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$
Vibration	up to 10 g to 2000 Hz maximum

EMC COMPLIANCE PER DIRECTIVE 89/336/EEC

[^1]EN50081-2 / EN50082-2

$12.5^{\prime \prime}$ [309 mm]

$5.3^{\prime \prime}$ [135 mm]

The PT9510 can operate from an unregulated 14.5 to 40 VDC power supply while providing a regulated output signal over it's full extended range of up to 1700 ". It provides a 0 - 10 VDC position feedback signal proportional to the linear movement of it's stainless steel measuring cable.

As a member of Celesco's innovative family of NEMA-4 rated cable-extension transducers, the PT9510 offers numerous benefits. It installs in minutes, functions properly without perfectly parallel alignment, and when its cable is retracted, it measures only 6 ".

Output Signal:

*Additional Output Options: 0...5, - $5 . . .+5,-10 . . .+10 \mathrm{Vdc}$

Outline Drawing

(A) DIMENSION

RANGE	inches [mm]
600	$1.76[44,7]$
800	$1.58[40,1]$
1000	$1.98[50,2]$
1200	$1.98[50,2]$
1500	$1.86[47,2]$
1700	$2.11[53,6]$

DIMENSIONS ARE IN INCHES [MM]
tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.

* tolerance $=+.005-.001$ [+. $13-.03]$
** tolerance $=+.005-.005$ [+. 13 -.13]

VLS Option - Free Release Protection

The patented Celesco Velocity Limiting System (VLS) is an option for PT9000 Series cable extension transducers that limits cable retraction to a safe 40 to 55 inches per second for the single spring option and 40 to 80 inches per second for the higher tension dual spring option.

The VLS option prevents the measuring cable from ever reaching a damaging velocity during an accidental free release. This option is ideal for mobile applications that require frequent cable disconnection and reconnection. It prevents expensive unscheduled downtime due to accidental cable mishandling or attachment failure.

How To Configure Model Number for VLS Option:

VLS 9510 -
 \qquad

creating VLS model number (example)...

1. select PT9510 model
2. remove "PT" from the model number

PT9510-1200-111-1110 PX 9510-1200-111-1110
3. add "VLS" VLS + 9510-1200-111-1110

VLS9510-1200-111-1110
4. completed model number !

Ordering Information:

Model Number:

Sample Model Number:
PT9510-1200-111-1110

B range:	500 inches
(A) enclosure/cable tension:	aluminum
B measuring cable:	nylon-coated stainless
C cable exit:	front
(B) output signal:	$0 \ldots 10 \mathrm{vdc}$
(F) electrical connection:	6 -pin plastic connector

Full Stroke Range:

\mathbb{B} order code:	$\mathbf{0 6 0 0}$	$\mathbf{0 8 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 2 0 0}$	$\mathbf{1 5 0 0}$	$\mathbf{1 7 0 0}$
full stroke range, min:	600 in.	800 in.	1000 in.	1200 in.	1500 in.	1700 in.
cable tension $(\pm 35 \%):$	27 oz.	24 oz.	20 oz.	19 oz.	18 oz.	17 oz.

Enclosure Material:

(4) order code:
enclosure material: max. acceleration: max. velocity:

1

powder-painted aluminum
1 g
60 inches $/$ sec.

3
303 stainless steel
.33 g

20 inches/sec.

Measuring Cable:

\qquad
1
2
nylon-coated stainless steel*
un-coated stainless steel*

*cable diameter: $\{$	stroke range:	0600	0800	1000	1200	1500	1700
	nylon-coated cable:	. 034 in.	. 019 in.	. 019 in.	. 019 in .	. 014 in.	.014 in.
	un-coated cable:	. 031 in .	. 018 in .	. 018 in.	. 018 in.	. 015 in.	. 015 in.

Cable Exit:

Corder code:

Output Signals:

(B) order code:	1	2	3	4	5	6	7	8
output signal options:	$\begin{aligned} & 0 . . .10 \mathrm{VDC} \\ & 0 \end{aligned}$	${ }^{10 \ldots 0 \mathrm{VDC}}$	$0 . . .5 \mathrm{VDC}$ 0	$5 . . .0 \mathrm{VDC}$ 5	-10...+10 VDC	+10...-10 VDC	$\begin{aligned} & -5 \ldots+5 \mathrm{VDC} \\ & -5 \end{aligned}$	+5...-5 VDC
input voltage: span adjustment: zero adjustment:	14.5	vdc		vdc	14.5 -	40 vdc	10.5	40 vdc
	to 50% of full stroke range				to 75\% of full stroke range			
					from factory set zero to 25% of full stroke range			
	ordercode $=1=0 . .10$ VDC \Rightarrow				$\begin{aligned} & 0 \mathrm{vdc}= \\ & 0 \mathrm{vdc}= \end{aligned}$	\qquad		

Ordering Information (cont.):

Electrical Connection:

F order code:	1	2	3	4
		10-ft. [3 M] waterproof cable IP 67, NEMA 4X**, 6 $10 \mathrm{ft} . \times 0.4-\mathrm{in}$. dia. [3 $\mathrm{M} \times 10 \mathrm{~mm}$ dia.] 18 AWG, type SJTW	6-pin metal connector w/mating plug IP 65, NEMA 4 3/8-in. [9 mm] max cable dia. 16 AWG max conductor size connector: MS3102E-14S-6P mating plug: MS3106E-14S-6S	25-ft. [7.5 M] instrumentation cable IP 67, NEMA 6 $25 \mathrm{ft} . \times 0.2$-in. dia. [7,5 M $\times 5 \mathrm{~mm}$ dia.] 24 AWG, shielded
P order code:	5	6	7	
		10-ft. [3 M] pressure tested* waterproof cable IP 68, NEMA 4X**, 6P $10 \mathrm{ft} . \times 0.4$-in. dia. [$3 \mathrm{M} \times 10 \mathrm{~mm}$ dia.] 18 AWG, type SJTW	100-ft. [30 M] pressure tested* waterproof cable IP 68, NEMA 4X**, 6P 100 ft. $\times 0.4$-in. dia. [$30 \mathrm{M} \times 10 \mathrm{~mm}$ dia.] 18 AWG, type SJTW	
	6-pin Mating Plug pin signal A B input voltage output signal C 		Waterproof Cable	Instrumentation Cable color code signal RED input voltage GREEN output signal BLACK common

Notes: $\left\{\begin{array}{lll}* & \text {-Test pressure: } 100 \text { feet [30 meters] } \mathrm{H}_{2} \mathrm{O} \text { (40 PSID); Test Medium: Air; Duration: } 2 \text { hours. } \\ { }^{*} & \end{array}\right.$ -NEMA $4 X$ applies to stainless steel enclosure only.

Output Signal Settings (does not apply to $-5 \ldots+5 \&-10 \ldots+10$ vdc options)

The output signal direction can be reversed at any time by simply changing the dip-switch settings found on the internal signal board. After the settings have been changed, adjustment of the Zero and Span trimpots will be required to precisely match signal values to the beginning and end points of the stroke.

To gain access to the signal board, remove four Allen-Head Screws and remove end cover bracket.

Caution! Do Not Remove Spring-Side End Cover
Removing spring-side end cover could cause spring to become unseated and permanently damaged.

PT9150 (amimi

Extended Ranges • Incremental Encoder

Linear Position to 1700 inches (4300 cm)
Stroke Range Options: 0-600 to 0-1700 inches
VLS Option To Prevent Free-Release Damage
IP67 • NEMA 6 Protection

GENERAL

| Full Stroke Range Options (on this datasheet) | $0-600$ to 0 - 1700 inches |
| :--- | ---: | ---: |
| Output Signal | incremental encoder (quadrature) |
| Output Driver Options | TTL/CMOS, open collector or line driver |
| Accuracy | 0.04% full stroke |
| Repeatability | $\pm 0.02 \%$ full stroke |
| Resolution Options | 10 to 250 pulses per inch |
| Measuring Cable | nylon-coated stainless steel |
| Enclosure Material | powder-painted aluminum or stainless steel |
| Sensor | optical incremental encoder |
| Maximum Retraction Acceleration | see ordering information |
| Maximum Velocity | see ordering information |
| Weight, Aluminum (Stainless Steel) Enclosure | 14 lbs (28 lbs .) max. |

ELECTRICAL

Input Voltage see ordering information
Input Current see ordering information

ENVIRONMENTAL
Enclosure
NEMA 4/4X/6, IP 67
Operating Temperature
0° to $160^{\circ} \mathrm{F}\left(-17^{\circ}\right.$ to $\left.71^{\circ} \mathrm{C}\right)$
Vibration
up to 10 g to 2000 Hz maximum

With its incremental optical encoder and industrial design this rugged transducer provides the highest accuracy and longest life of any measurement device of its kind. This model is available in a wide variety of resolutions and output stages to fit virtually any requirement.

It can measure up to 1700 ", yet when its cable is retracted it is only 6 " long. Its small size and low-cost-to-measurement ratio offers remarkable flexibility and value.

Output Signal Options:

-- see ordering information for available channels

Outline Drawing

(A) DIMENSION

RANGE	inches [mm]
600	$1.76[44,7]$
800	$1.58[40,1]$
1000	$1.98[50,2]$
1200	$1.98[50,2]$
1500	$1.86[47,2]$
1700	$2.11[53,6]$

DIMENSIONS ARE IN INCHES [MM]
tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.

* tolerance $=+.005-.001$ [+. $13-.03]$
** tolerance $=+.005-.005$ [+. $13-.13$]

VLS Option - Free Release Protection

The patented Celesco Velocity Limiting System (VLS) is an option for PT9000 Series cable extension transducers that limits cable retraction to a safe 40 to 55 inches per second for the single spring option and 40 to 80 inches per second for the higher tension dual spring option.

The VLS option prevents the measuring cable from ever reaching a damaging velocity during an accidental free release. This option is ideal for mobile applications that require frequent cable disconnection and reconnection. It prevents expensive unscheduled downtime due to accidental cable mishandling or attachment failure.

How To Configure Model Number for VLS Option:
VLS 9150 - \qquad

creating VLS model number (example)...

1. select PT9150 model

PT9150-1200-111-1110
2. remove "PT" from the model number

PX 9150-1200-111-1110
3. add "VLS" VLS + 9150-1200-111-1110
4. completed model number !

VLS9150-1200-111-1110

Ordering Information:

Model Number:

Sample Model Number:
PT9150-0800-111-1110

(B) range:	500 inches
A enclosure:	aluminum
(B) measuring cable:	nylon-coated stainless
C cable exit:	front
(D) output signal:	$T T L / C M O S$ driver
(B) resolution:	100 ± 2 pulses per inch

Full Stroke Range:

B order code:	0600	0800	1000	1200	1500	1700
english $\{$ full stroke range, min:	600 in.	$800 \mathrm{in}$.	1000 in.	1200 in.	1500 in.	1700 in.
ranges cable tension ($\pm 35 \%$):	27 oz .	24 oz .	20 oz.	19 oz .	18 oz .	17 oz .
(1) order code:	15000	20000	25000	30000	35000	40000
metric $\{$ full stroke range, min:	15.000 mm	20.000 mm	25.000 mm	30.000 mm	35.000 mm	40.000 mm
ranges $\{$ cable tension ($\pm 35 \%$):	7,5 N	6,7 N	5,6 N	5,3 N	5,0 N	$4,7 \mathrm{~N}$

Enclosure Material:

(4) order code:	$\mathbf{1}$	$\mathbf{3}$
enclosure material:	powder-painted aluminum	303 stainless steel
max. acceleration:	1 g	.33 g
max. velocity:	60 inches $/ \mathrm{sec}$.	$20 \mathrm{inches} / \mathrm{sec}$.

Measuring Cable:

B order code:

1
nylon-coated stainless steel*

*cable diameter: $\{$	stroke range:	0600	0800	1000	1200	1500	1700
	nylon-coated cable:	. 034 in.	. 019 in.	. 019 in .	. 019 in .	. 014 in .	. 014 in.
	un-coated cable:	. 031 in .	. 018 in .	. 018 in.	. 018 in.	. 015 in.	. 015 in.

Cable Exit:
C.

Output Signals:

(D) order code:	1	2	3	4
output driver:	TTL - CMOS	Open Collector	5 V - Line Driver	Universal Line Driver
	Input voltage $\left(V_{+}\right):$ $4.5 \ldots 13.2 \mathrm{Vdc}$ Sink current: $20 \mathrm{~mA} \mathrm{max}$. Input current: 80 mA max.	Input voltage $(\mathrm{V}+):$ $10.8 . . .26 .4 \mathrm{Vdc}$ Sink current: Input current: 80 mA max. 80 mA.	Input voltage $\left(\mathrm{V}_{+}\right):$ 5 Vdc Sink current: 20 mA max. Input current: 150 mA max.	Input voltage (V+ $)$ $5 \ldots .30 \mathrm{VDC}$ Source/Sink: 20 mA max. Input current: 100 mA max, no load

Ordering Information (cont.):

Resolution:

(B) order code:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
english ranges:	100 ± 2 pulses per in.	200 ± 4 pulses per in.	250 ± 5 pulses per in.	10 ± 0.2 pulses per in.
metric ranges:	$5 \pm 0,1$ pulses per mm	$10 \pm 0,2$ pulses per mm	$12,5 \pm 0,25$ pulses per mm	$0,5 \pm 0,01$ pulses per mm

Electrical Connection:

(B) order code:

[^2]
Cable-Extension Position Transducer

RS232 Data Communication

Ranges: 0-600 to 0-1700 inches

 Industrial Grade
Specification Summary:

GENERAL

Full Stroke Ranges. 0-600 to 0-1700 inches

Accuracy.. . $\pm 0.10 \%$ full stroke
Repeatability. $\pm 0.02 \%$ full stroke
Resolution . $\pm 0.003 \%$ full stroke
Measuring Cable . nylon-coated stainless steel
Enclosure Material. powder-painted aluminum or stainless steel
Sensor . plastic-hybrid precision potentiometer
Potentiometer Cycle Life. 250,000 cycles before signal degradation may occur
Maximum Retraction Acceleration. see ordering information
Maximum Velocity . see ordering information
Weight, Aluminum (Stainless Steel) Enclosure . 8 lbs. (16 Ibs.), max.

ELECTRICAL

Input Voltage 9... 22 VDC
Input Current. 40 mA
 Update Rate. 32msec

ENVIRONMENTAL

Environmental Suitability.
.NEMA 4X/6, IP 67
Operating Temperature
-40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$ Vibration. up to 10 G's to 2000 Hz maximum

	600 in.	$800 \mathrm{in}$.	$1000 \mathrm{in}$.	$1200 \mathrm{in}$.	1500 in.	1700 in.
(A)	1.76 [44,7]	1.58 [40,1]	1.98 [50,2]	1.49 [37,8]	1.86 [47,2]	2.11 [53,6]
B	$4.52 \pm 0.15[114,8 \pm 4,0]$					
C	$10.40 \pm 0.08[264,2 \pm 2,0]$					
D	12.15 [308,6] max.					

[^3]$\begin{aligned} * \text { tolerance } & =+.005-.001[+.13-.03] \\ * * & \text { tolerance }=+.005-.005[+.13-.13]\end{aligned}$

<Extended Range> PT9232

The PT9232 delivers position feedback via RS232 serial communication to your data acquisition or controller system. The PT9232 sends a raw 16-bit count from 0000 H to FFFFH. Additionally this device can be set to continuously send data or send data only when polled.

As the internal position sensing element is a precision potentiometer, this transducer maintains current accurate position even during power loss and does not need to be reset to a "home" position.

Output Signal

I/0 Format:

Data Frame

6 byte Hex string:

Important! All communications to/from the transducer are in HEX!

User Commands:

User Command

Sensor Response

Description	<CMD>	$<B_{0}>$	$<B_{1}>$	$<B_{2}>$	<CMD>	$<\mathrm{B}_{0}>$	$<B_{1}>$	$<B_{2}>$
Get Sensor Info	0×05	0x00	0x00	0x00	0×05	version ${ }^{(4)}$	date ${ }^{(5)}$	date ${ }^{(5)}$
Get Serial Number	0×15	0×00	0×00	0×00	0×15	serial number ${ }^{(3)}$		
Start Continuous Data	0×25	0×00	0x00	0x00	0×25	0×00	0×00	0×00
Stop Continuous Data	0×35	0×00	0x00	0×00	0×35	0x00	0×00	0x00
Get Position Data	0×45	0×00	0x00	0×00	0×45	CMC ${ }^{(1)}$	CMC ${ }^{(1)}$	status ${ }^{(2)}$

${ }^{(1)}$ CMC - Current Measurement Count (Position)
The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable.

The CMC is a 16 -bit value that occupies the first two bytes (B_{0} and B_{1}) of the data field. B_{0} is the MSB (most significant byte) and B_{1} is the LSB (least significant byte).

The CMC starts at 0000 H with the measuring cable fully retracted and continues upward to the end of the stroke range stopping at FFFFH. This holds true for all ranges.

${ }^{(2)}$ Status

The status byte is used as a flag to indicate the validity of the position signal that the internal electronics receives from the potentiometer.

Flags are as follows:
$0 \times 00=$ GREEN, $0 \times 55=$ YELLOW, $0 \times A A=$ RED
A "green" flag shows everything 0K. A "yellow" or "red" flag indicates that the sensor has either been extended beyond its range or that there is a problem with the potentiometer.

${ }^{(3)}$ Serial Number

Each sensor has it's own unique serial number. This information can be retrieved by sending the sensor the "Get Serial Number" command.

The serial number is a 3 byte value from which ranges from 0 to 9999999 (decimal).

${ }^{(4)}$ Version

This is a single byte value (0-255 decimal) which indicates the currently installed firmware version of the sensor.

(5) Date

This is a 2 byte value showing the date of currently installed firmware. This value ranges from 01011 12319 (decimal). Format is MMDDY. While the month and day are expressed as two digit numbers the year is expressed in a single digit only.

Example: 08054 = August 5, 2004

Baud Rate

The baud rate can be set using switches 7 \& 8 on the 8 -pole DIP switch found on the rs232 controller board located inside the transducer.

DIP-7 DIP-8 baud rate

0	0	9600	
1	0	19200	- $4=$ "0"
0	1	38400	
		9600	

RS232 Controller Board and DIP Switch Location
baud rate switches

PT9232 Extended Range • Cable-Extension Transducer • RS232

Ordering Information:

Model Number:

Sample Model Number:
PT9232-1200 - AL - FR - M6

(B) range:	1200 inches
A	enclosure

Full Stroke Range:

B order code:	600	800	1000	1200	1500	1700
full stroke range, min:	600 in.	800 in .	1000 in.	1200 in.	1500 in.	1700 in.
cable tension ($\pm 35 \%$):	27 oz.	24 oz.	20 oz.	19 oz.	18 oz.	17 oz .
measuring cable:	.034-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.014-in. dia. nylon-coated stainless	.014-in. dia. nylon-coated stainless

Enclosure Material:

(4) order code:	AL	SS
enclosure material:	powder-painted aluminum	303 stainless steel
max. acceleration:	1 g	.33 g
max. velocity:	60 inches $/ \mathrm{sec}$.	$20 \mathrm{inches} / \mathrm{sec}$.

Cable Exit:

Border code: FR

Electrical Connection:

Corder code:

PT9301 (

 Extended Ranges • Position/Velocity Output

 Extended Ranges • Position/Velocity Output}

Linear Position/Velocity to 1700 inches (4300 cm)	
Stroke Range Options: 0-600 to 0-1700 inches	
VLS Option To Prevent Free-Release Damage	
IP68 • NEMA 6 Protection	
GENERAL	
Full Stroke Range Options (on this datasheet)	datasheet) 0-600 to 0-1700 inches
Measuring Cable Options stai	stainless steel or thermoplastic
Enclosure Material	powder-painted aluminum
Sensor, Position plastic-hybrid	plastic-hybrid precision potentiometer
Sensor, Velocity	DC tach generator
Maximum Retraction Acceleration	n see ordering information
Maximum Velocity	see ordering information
Weight, Aluminum (Stainless Steel) Enclosure	l) Enclosure 14 lbs . (28 lbs.) max.

POSITION

Output Signal	voltage divider (potentiometer)
Accuracy	$\pm 0.10 \%$ full stroke
Repeatability	$\pm 0.02 \%$ full stroke
Resolution	essentially infinite
Sensor, Position plastic	-hybrid precision potentiometer
Potentiometer Cycle Life	$\geq 250,000$
Input Resistance Options 500, $1 \mathrm{~K}, 5 \mathrm{~K}$ or $10 \mathrm{~K} \Omega$ (see ordering information)	
Power Rating, Watts	2.0 at $70^{\circ} \mathrm{F}$ derated to 0 at $250^{\circ} \mathrm{F}$
Recommended Maximum Input Voltage	30 V (AC/DC)

VELOCITY

Output Signal	DC tachometer output
Linearity	better than $\pm 0.10 \%$ of output at any velocity
Repeatability	$\pm 0.10 \%$ of reading
Sensor	tach generator
Input Voltage	none required
Output Voltage @ 100 inches per minute	$361 \mathrm{mV} \pm 3 \%$
Output Impedance	350 ohms $\pm 10 \%$
Output Ripple (for velocity ≥ 1.29 inches per second)	$\pm 3 \% \mathrm{rms}$

ENVIRONMENTAL

Enclosure
NEMA 4/4X/6, IP 67/68
Operating Temperature -40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$

Vibration up to 10 g to 2000 Hz maximum

The PT9301 is a combination position and velocity transducer for demanding long-range applications requiring a linear position measurements in ranges up to 1700". A precision plastic-hybrid potentiometer provides accurate position feedback while a self-generating DC tachometer provides a velocity signal that is proportional to the speed of the traveling stainless-steel measuring cable.

As a member of Celesco's innovative family of NEMA-4 rated cable-extension transducers, the PT9301 offers numerous benefits. It installs in minutes, functions properly without perfectly parallel alignment, and when its cable is retracted, it measures only 6 ".

Output Signal:

Outline Drawing

dimension

RANGE	inches [mm]
600	$1.76[44,7]$
800	$1.58[40,1]$
1000	$1.98[50,2]$
1200	$1.98[50,2]$
1500	$1.86[47,2]$
1700	$2.11[53,6]$

DIMENSIONS ARE IN INCHES [MM]
tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.

* tolerance $=+.005-.001$ [+. $13-.03]$
$* *$ tolerance $=+.005-.005[+.13-.13]$

VLS Option - Free Release Protection

The patented Celesco Velocity Limiting System (VLS) is an option for PT9000 Series cable extension transducers that limits cable retraction to a safe 40 to 55 inches per second for the single spring option and 40 to 80 inches per second for the higher tension dual spring option.

The VLS option prevents the measuring cable from ever reaching a damaging velocity during an accidental free release. This option is ideal for mobile applications that require frequent cable disconnection and reconnection. It prevents expensive unscheduled downtime due to accidental cable mishandling or attachment failure.

How To Configure Model Number for VLS Option:
VLS 9301- \qquad $]_{\theta}-\frac{0}{\theta}$
creating VLS model number (example)...

1. select PT9301 model

PT9301-1200-111-1110
2. remove "PT" from the model number PX 9301-1200-111-1110
3. $a^{\prime d}$ "VLS"
4. completed model number !

VLS + 9301-1200-111-1110
VLS9301-1200-111-1110

Ordering Information:
Model Number:

Sample Model Number:
PT9301-1200-111-1110

(B) range:	1200 inches
(B) measuring cable:	nylon-coated stainless
(C) cable exit:	front
(D) output signal:	500 ohm position / DC tachol
(E) electrical connection:	6 -pin plastic connector

Full Stroke Range:

\mathbb{B} order code:	$\mathbf{0 6 0 0}$	$\mathbf{0 8 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 2 0 0}$	$\mathbf{1 5 0 0}$	1700		
full stroke range, $\mathrm{min}:$	600 in.	\vdots	800 in.	\vdots	1000 in.	\vdots	1200 in.	1500 in.
cable tension $(\pm 35 \%):$	27 oz.	\vdots	24 oz.	\vdots	20 oz.	\vdots	19 oz.	\vdots

Measuring Cable:

Cable Exit:

Corder code:

Output Signals:

(D) order code:	1	2	3	4
position sensing potentiometer:	500 ohms*	1000 ohms*	5000 ohms*	10,000 ohms*
	position sensing circuit	value specified by ordercode	velocity sensing circuit	

Ordering Information (cont.):

Electrical Connection:

© order code:
.

3
6-pin metal connector with mating plug
IP 65, NEMA 4

4
25-ft. instrumentation cable 24 AWG, shielded

IP 67, NEMA 6

$25 \mathrm{ft} . \times 0.2-\mathrm{in}$. diag.
[$7,5 \mathrm{M} \times 5 \mathrm{~mm}$ ia.]
24 AWG, shielded

25-ft. instrumentation cable:

Cable-Extension Position Transducer

CANbus • SAE J1939

Ranges: 0-600 to 0-1700 inches

Industrial Grade

Specification Summary:

GENERAL

Full Stroke Range Options-on this datasheet . 0-600 to 0-1700 inches Electrical Signal Interface. CANbus SAE J1939 Protocol. Proprietary B Accuracy... $\pm 0.10 \%$ full stroke Repeatability. $\pm 0.02 \%$ full stroke Resolution . $\pm 0.003 \%$ full stroke Measuring Cable . nylon-coated stainless steel Enclosure Material. powder-painted aluminum or stainless steel Sensor . plastic-hybrid precision potentiometer Potentiometer Cycle Life 250,000, min. -before signal degradation can occur Maximum Retraction Acceleration. see ordering information Maximum Velocity . see ordering information Weight, Aluminum (Stainless Steel) Enclosure . 14 lbs. (28 İbs.) max.

ELECTRICAL

Input Voltage .. 7-18 VDC
Input Current. 60 mA max.
Address Setting/Node ID . $0 . . .63$ set via DIP switches
Baud Rate... . 125 K , 250 K or 500 K set via DIP switches
Update Rate. 10 ms . (20 ms. available-contact factory)

ENVIRONMENTAL

Enclosure NEMA 4/4X/6, IP 67
Operating Temperature
-40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$ Vibration
. up to 10 G 's to 2000 Hz maximum

	600 in.	800 in .	1000 in .	1200 in.	1500 in.	1700 in.
$\begin{aligned} & \text { A } \\ & B \end{aligned}$	1.76 [44,7]	1.58 [40,1]	1.98 [50,2]	1.49 [37,8]	1.86 [47,2]	2.11 [53,6]
	$4.52 \pm 0.15[114,8 \pm 4,0]$					
C	10.40 ± 0.08 [264, $2 \pm 2,0]$					
(1)	12.15 [308,6] max.					

[^4]$*$ tolerance $=+.005-.001[+.13-.03]$
$* *$ tolerance $=+.005-.005[+.13-.13]$
<Extended Range> PT9CN

The PT9CN communicates linear position feedback via the CANbus SAE J1939 interface. The PT9CN has been designed for factory and harsh environment applications requiring full stroke ranges up to 1700".

As a member of Celesco's innovative family of NEMA 4 rated cable-extension transducers, the PT9CN installs in minutes by simply mounting it's body to a fixed surface and attaching it's cable to the movable object. Perfect parallel alignment not required.

Output Signal

I/O Format and Settings

repetition $=8 \mathrm{msec}$.

- Identifier

	Message Priority			$\begin{aligned} & \hline \text { Future } \\ & \text { Use } \end{aligned}$		J1939 Reference Proprietary B								Data Field Type*								Not Used		Node ID**					
Example -	1	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	1	1	1	1
Identifier Bit No. -	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Hex Value -	0					F				F				5				3				3				F			

*Sensor field data can be factory set to customer specific value. **Customer defined, set via Dips 1-6. Bit values shown for example only, see Address Setting below.

- Data Field

$B_{0}=$ LSB current \% of measurement range byte
$\mathbf{B}_{1}=$ MSB current \% of measurement range byte
$B_{2}=L S B$ current measurement count byte
$B_{3}=$ MSB current measurement count byte

$$
\begin{aligned}
& \mathbf{B}_{4}=\text { error flag } \\
& \mathbf{B}_{5}=\text { error flag } \\
& \mathbf{B}_{6}=\text { LSB velocity data byte } \\
& \mathbf{B}_{7}=\text { MSB velocity data byte }
\end{aligned}
$$

\section*{| | B_{7} | $\mathrm{~B}_{6}$ | $\mathrm{~B}_{5}$ | $\mathrm{~B}_{4}$ | $\mathrm{~B}_{3}$ | $\mathrm{~B}_{2}$ | $\mathrm{~B}_{1}$ | $\mathrm{~B}_{0}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Current Measurement Count

The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable. The CMC is a 16 -bit value that occupies bytes $\mathbf{B}_{\mathbf{2}}$ and $\mathbf{B}_{\mathbf{3}}$ of the data field. $\mathbf{B}_{\mathbf{2}}$ is the LSB (least significant byte) and \mathbf{B}_{3} is the MSB (most significant byte).

The CMC starts at 0×0000 with the measuring cable fully retracted and continues upward to the end of the stroke range stopping at 0xFFFF. This holds true for all ranges.

Converting CMC to Linear Measurement

To convert the current measurment count to inches or millimeters, simply divide the count by 65,535 (total counts over the range) and then multiply that value by the full stroke range:

$$
\left(\frac{\begin{array}{c}
\text { current measurement } \\
\text { count }
\end{array}}{65,535}\right) \times \underset{\text { runge }}{\text { full stroke }}
$$

Sample Conversion:
If the full stroke range is 30 inches and the current position is 0x0FF2 (4082 Decimal) then,
$\left(\frac{4082}{65,535}\right) \times 30.00$ inches $=1.87$ inches
If the full stroke range is $\mathbf{6 2 5} \mathrm{mm}$ and the current position is 0x0FF2 (4082 Decimal) then,

$$
\left(\frac{4082}{65,535}\right) \times 625 \mathrm{~mm}=39 \mathrm{~mm}
$$

\section*{| | B_{7} | $\mathrm{~B}_{6}$ | $\mathrm{~B}_{5}$ | $\mathrm{~B}_{4}$ | $\mathrm{~B}_{3}$ | $\mathrm{~B}_{2}$ | $\mathrm{~B}_{1}$ | $\mathrm{~B}_{0}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Current \% of Measurement Range

The Current \% of Measurement Range is a 2-byte value that expresses the current linear position as a percentage of the entire full stroke range. Resolution is $.1 \%$ of the full stroke measurement range.

This value starts at 0×0000 at the beginning of the stroke and ends at 0x03E8.

Example:

Hex	Decimal	Percent
0000	0000	0.0%
0001	0001	0.1%
0002	0002	0.2%
\ldots	\ldots	\ldots
03 E8 8	1000	100.0%

	B_{7}	$\mathrm{~B}_{6}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	

Error Flags

0×55 (yellow LED on controller board) indicates that the sensor has begun to travel beyond the calibrated range of the internal position potentiometer.

0xAA (red LED on controller board) indicates that the sensor has moved well beyond the calibrated range of the internal position potentiometer.

If either error flag occurs within the full stroke range of the sensor, the unit should be returned to the factory for repair and recalibration.

\section*{| | B_{7} | $\mathrm{~B}_{6}$ | $\mathrm{~B}_{5}$ | $\mathrm{~B}_{4}$ | $\mathrm{~B}_{3}$ | $\mathrm{~B}_{2}$ | $\mathrm{~B}_{1}$ | $\mathrm{~B}_{0}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Velocity

Data in bytes $\mathbf{B}_{\mathbf{7}}-\mathbf{B}_{\mathbf{6}}$ is the change in the CMC (current measurement count) over a 100 msec time period. This data can then be used to calculate velocity in a post processing operation.

Velocity Calculation

$\left(\frac{\text { count change }-32767}{.1 \text { sec. time period }}\right) \times\left(\frac{\text { full stroke range }}{65,535}\right)$

Sample Calculations

Cable Extension (positive direction):
$B_{7}-B_{6}=0 \times 80 C 6(32966 \mathrm{Dec})$, full stroke $=200 \mathrm{in}$.
$\left(\frac{32966-32767}{.1 \mathrm{sec}}\right) \times\left(\frac{200 \mathrm{in} .}{65,535}\right)=6.07 \mathrm{in} . / \mathrm{sec}$.

Cable Retraction (negative direction):
$B_{7}-B_{6}=0 \times 7 F 1 A(32538 \mathrm{Dec})$, full stroke $=200 \mathrm{in}$.
$\left(\frac{32538-32767}{.1 \mathrm{sec}}\right) \times\left(\frac{200 \mathrm{in} .}{65,535}\right)=-6.99 \mathrm{in} . / \mathrm{sec}$.

PT9CN Extended Range • Cable-Extension Transducer: CANbus SAE J1939

Setting the Address (Node ID) and Baud Rate

Address Setting (Node ID)

The Address Setting (Node ID) is set via 6 switches located on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

The DIP switch settings are binary starting with switch number $1\left(=2^{0}\right)$ and ending with switch number $6\left(=2^{5}\right)$.

Baud Rate

The transmission baud rate may be either factory preset at the time of order or set manually at the time of installation.

The baud rate can be set using switches 7 \& 8 on the 8 -pole DIP switch found on the DeviceNET controller board located inside the transducer.

DIP-1 $\left(2^{0}\right)$	DIP-2 $\left(2^{1}\right)$	DIP-3 $\left(2^{2}\right)$	DIP-4 $\left(2^{3}\right)$	DIP-5 $\left(2^{4}\right)$	DIP-6 $\left(2^{5}\right)$	address $($ decimal)
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	1	0	0	0	0	2
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
1	1	1	1	1	1	63

DIP-7	DIP-8	baud rate
0	0	125k
1	0	250k
0	1	500k
1	1	125k

Ordering Information:

Model Number:

to gain access to the controller board, remove four Allen-Head Screws and remove end cover bracket.

600

(${ }^{\text {R order code: }}$	600	800	1000	1200	1500	1700
full stroke range, min:	600 in .	800 in .	1000 in.	1200 in.	1500 in.	1700 in.
cable tension ($\pm 35 \%$):	27 oz .	24 oz .	20 oz.	19 oz .	18 oz .	17 oz .
measuring cable:	.034-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.014-in. dia. nylon-coated stainless	.014-in. dia. nylon-coated stainless

Enclosure Material:

(A) order code:
enclosure material: max. acceleration: max. velocity:

AL powder-painted aluminum

1 g 60 inches/sec.

Sample Model Number:
PT9CN - 1200-AL - FR - J - 500-32 - SC5
(B) range:
(A) enclosure
(B) cable exit:
(C) interface:
(D) baud rate:
(B) node ID:

Electrical connection:

1200 inches
aluminum
front (horizontal)
CANbus SAE J1939
500 k bits/sec.
32 decimal
5-meter cordset with straight plug

Full Stroke Range:

,

$\mathbf{A L}$
powder-painted aluminum
1 g
60 inches $/$ sec.

SS
303 stainless steel
.33 g

20 inches/sec.

Cable Exit:

Border code: | FR |
| :---: |
| front |

PT9CN Extended Range • Cable-Extension Transducer: CANbus SAE J1939

Ordering Information:

Baud Rate:

(D) order code:	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{5 0 0}$
	125 kbaud	250 kbaud	500 kbaud

Node ID:

B. order code:	0	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	\ldots	61	62	63

Electrical Connection:

Cable-Extension Position Transducer

DeviceNET®

Ranges: 0-600 to 0-1700 inches

Industrial Grade

Specification Summary:

GENERAL

Full Stroke Range Options-on this datasheet. .0-600 to 0-1700 inches Electrical Signal Interface.. . CANbus ISO 11898 Protocol. DeviceNET Version 2.0
 Repeatability. $\pm 0.02 \%$ full stroke Resolution . $\pm 0.003 \%$ full stroke Measuring Cable . nylon-coated stainless steel Enclosure Material. powder-painted aluminum or stainless steel Sensor plastic-hybrid precision potentiometer Potentiometer Cycle Life 250,000, min. - before signal degradation can occur Maximum Retraction Acceleration. see ordering information Maximum Velocity . see ordering information Weight, Aluminum (Stainless Steel) Enclosure . 14 lbs. (28 İbs.) max.

ELECTRICAL

Input Voltage ... bus powered
Input Current. 40 mA
Address Setting/Node ID 63 set via DIP switches -default setting: 63 Baud Rate.. $125 \mathrm{~K}, 250 \mathrm{~K}$ or 500 K set via DIP switches EDS File . available @ http://www.celeso.com/download

ENVIRONMENTAL

Enclosure

.

Operating Temperature \qquad
.NEMA 4/4X/6, IP 67 Vibration \qquad -40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$ up to 10 G 's to 2000 Hz maximum
0.85 [21.6]

	600 in.	$800 \mathrm{in}$.	$1000 \mathrm{in}$.	1200 in.	$1500 \mathrm{in}$.	1700 in.
(A)	1.76 [44,7]	1.58 [40,1]	1.98 [50,2]	1.49 [37,8]	1.86 [47,2]	2.11 [53,6]
B	$4.52 \pm 0.15[114,8 \pm 4,0]$					
C	$10.40 \pm 0.08[264,2 \pm 2,0]$					
D	12.15 [308,6] max.					

[^5]I/0 Format:

Data Field

*Current Measurement Count

The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable.

The CMC is a 16 -bit value that occupies the first two bytes $\left(B_{0}\right.$ and $\left.B_{1}\right)$ of the data field. B_{0} is the LSB (least significant byte) and B_{1} is the MSB (most significant byte).

The CMC starts at 0000 H with the measuring cable fully retracted and continues upward to the end of the stroke range stopping at FFFFH. This holds true for all ranges.

**Full Stroke Range

The Full Stroke Range (FSR) is a 16 -bit value in the data field that expresses the full range of the sensor in inches. This value can be used to convert the actual count to units of measurement should the application require it.

The full stroke measurement range occupies the second two bytes (B_{2} and B_{3}) of the data field.
B_{2} is the LSB (least significant byte) and B_{3} is the MSB (most significant byte).

This value is expressed in inches.
Example:

Converting CMC to Inches

If required, the CMC can easily be converted to a linear measurement expressed in inches instead of just counts.

This is accomplished by first dividing the CMC by 65,535 (total counts over the range) and then multiplying that value by the FSR:

$$
\left(\frac{\text { CMC }}{65,535}\right) \times \text { FSR }
$$

Example:
If the full stroke range is $\mathbf{3 0}$ inches and the current position is OFF2 Hex (4082 Decimal) then,

$$
\left(\frac{4082}{65,535}\right) \times 30.00 \text { inches }=1.87 \text { inches }
$$

Address Setting (Node ID), Baud Rate and Bus Termination Settings

Address Setting (Node ID)

The Address Setting (Node ID) is set via 6 switches located on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

The DIP switch settings are binary starting with switch number $1\left(=2^{0}\right)$ and ending with switch number $6\left(=2^{5}\right)$

$\begin{gathered} \text { DIP-1 } \\ \left(2^{0}\right) \end{gathered}$	DIP-2 (21)	DIP-3 $\left(2^{2}\right)$	DIP-4 $\left(2^{3}\right)$	$\begin{gathered} \text { DIP-5 } \\ \left(2^{4}\right) \end{gathered}$	$\begin{gathered} \text { DIP-6 } \\ \left(2^{5}\right) \end{gathered}$	address (decimal)
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	1	0	0	0	0	2
...	\cdots	...	\cdots
1	1	1	1	1	1	63

DeviceNET Controller Board and DIP Switch Location

PT9DN Extended Range • Cable-Extension Transducer: DeviceNET®

Ordering Information:

Model Number:

PT9DN - 1200-AL - FR - 500 - TR - SC5

(B) range:	1200 inches
(4) enclosure	aluminum
(B) cable exit:	front (horizontal)
(${ }^{\text {d }}$ baud rate:	$500 \mathrm{kbits} / \mathrm{sec}$.
(D) terminating resistor:	yes
(B) electrical connection:	5-meter cordset with straight plug

Full Stroke Range:

B order code:	600	800	1000	1200	1500	1700
full stroke range, min:	600 in.	800 in .	1000 in.	1200 in.	1500 in.	1700 in.
cable tension ($\pm 35 \%$):	27 oz .	24 oz.	20 oz.	19 oz .	18 oz .	17 oz .
measuring cable:	.034-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.014-in. dia. nylon-coated stainless	.014-in. dia. nylon-coated stainless

Enclosure Material:

(4) order code:	AL	SS
enclosure material:	powder-painted aluminum	303 stainless steel
max. acceleration:	1 g	.33 g
max. velocity:	60 inches $/ \mathrm{sec}$.	20 inches $/ \mathrm{sec}$.

Cable Exit:

B order code:

Baud Rate:

C order code:	125	250	500
	25 kbaud	250 kbaud	500 kbaud

Terminating Resistor:

PT9DN Extended Range • Cable-Extension Transducer: DeviceNET®

Ordering Information:

Electrical Connection:

String Encoder

Mates To Virtually Any Encoder
 Ranges: 0-600 to 0-1700 inches
 Available With or Without Encoder

Specification Summary:

GENERAL

Full Stroke Range Options-on this datasheet 0-600 to 0-1700 inches Motion Conversion Ratio 12.6 inches per turn, see ordering information Accuracy
Typicalthe lesser of 0.02% f.s. or 0.04% of measurement $\pm 1 / 2$ pulse max.
\qquad
Repeatability. \qquad $\pm 0.02 \%$ of measurement $\pm 1 / 2$ pulse max.
Measuring Cable \qquad nylon-coated stainless steel
Enclosure Material .powder-painted aluminum Encoder Shaft Coupling \qquad aluminum flexible coupling Maximum Allowable Rotational Sensor Torque............................. 1.0 in-lbs. Maximum Retraction Acceleration see ordering information Maximum Velocity ...see ordering information Weight, Aluminum (Stainless Steel) Enclosure 14 lbs. (28 lbs.) max.

ENVIRONMENTAL

Operating Temperature -40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $90^{\circ} \mathrm{C}$)

Our unique string encoder module mates to virtually any encoder, giving you a cost-effective long-range linear position measurement solution that precisely fits your requirements.

This modular approach delivers the ultimate in flexibility. To order, simply select the measurement range, the cable tension and encoder mounting style-it's that easy! We even supply all the necessary encoder mounting tools and attaching hardware. If you can't find your encoder mounting style or you want us to provide the encoder, please give us a call.

Model Number:

» Trying to reorder but can't find your existing model number? Please contact factory for help.

Sample Model Number:
PT9600-1500-111-F01

(B) range:	1500 inches
A. enclosure:	aluminum
C cable exit:	front
(D) rotational sensor mounting style:	F01 (2.5-in. sq. flange)

Full Stroke Range/Conversion Ratio:

B order code:	0600	0800	1000	1200	1500	1700
full stroke range, min:	600 in.	800 in .	1000 in.	1200 in.	1500 in.	1700 in.
cable tension ($\pm 35 \%$):	27 oz.	24 oz.	20 oz.	19 oz .	18 oz .	17 oz .
measuring cable:	.034-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.019-in. dia. nylon-coated stainless	.014-in. dia. nylon-coated stainless	.014-in. dia. nylon-coated stainless
aluminum enclosure, 1 turn =	$12.673 \pm .010 \mathrm{in}$.	$12.626 \pm .010 \mathrm{in}$.	$12.626 \pm .010 \mathrm{in}$.	$12.626 \pm .010 \mathrm{in}$.	$12.613 \pm .010 \mathrm{in}$.	$12.613 \pm .010 \mathrm{in}$.
stainless steel enclosure, 1 turn =	$12.579 \pm .010 \mathrm{in}$.	$12.532 \pm .010 \mathrm{in}$.	$12.532 \pm .010 \mathrm{in}$.	$12.532 \pm .010 \mathrm{in}$.	$12.519 \pm .010 \mathrm{in}$.	$12.519 \pm .010 \mathrm{in}$.

PT9600 • Extended Range • Cable Reel Mates To Virtually Any Encoder

Enclosure Material:

4 order code:	$\mathbf{1}$	$\mathbf{3}$
enclosure material:	powder-painted aluminum	303 stainless steel
max. acceleration:	1 G	.33 G
max. velocity:	60 inches $/ \mathrm{sec}$.	20 inches $/ \mathrm{sec}$.

Cable Exit:

C.

Rotational Sensor Mounting Style:

(1) order code:	F01	F02	S01	S02	S04
	2.5 -in. Flange Mount	2-in. Flange Mount	Face-Mount	Face-Mount	Face-Mount
	$3 / 8$-inch shaft	$3 / 8$-inch shaft	6 mm shaft	10 mm shaft	10 mm shaft
			M4 mounting screws	M4 mounting screws	M3 mounting screws

Note: If you don't see your encoder style, please contact factory. All encoder types supported.

F01-2½-inch Sq. Flange Mount (3/8-inch shaft)

all dimensions are in inches
FO2 - 2-inch Sq. Flange Mount (3/8-inch shaft)

all dimensions are in inches

S01 - Face-Mount (6mm shaft/M4 screws)

all dimensions are in mm
S02 - Face-Mount (10mm shaft/M4 screws)

all dimensions are in mm
S04 - Face-Mount (10mm shaft/M3 screws)

PT9600 • Extended Range • Cable Reel Mates To Virtually Any Encoder

Outline Drawing

full stroke range

	600 in.	800 in.	1000 in.	1200 in.	1500 in.	1700 in.
B	$1.76[44,7]$	$1.58[40,1]$	$1.98[50,2]$	$1.49[37,8]$	$1.86[47,2]$	$2.11[53,6]$
	$4.52 \pm 0.15[114,8 \pm 4,0]$					
	$10.40 \pm 0.08[264,2 \pm 2,0]$					

[^6]* tolerance $=+.005-.001[+.13-.03]$
** tolerance $=+.005-.005[+.13-.13]$

[^0]: *Optional 3-wire, $0 . . .20 \mathrm{~mA}$ output signal available.

[^1]: Emission / Immunity

[^2]: now part of Measurement Specialties, Inc

[^3]: DIMENSIONS ARE IN INCHES [MM]
 tolerances are 0.03 IN . [0.5 MM] unless otherwise noted.

[^4]: DIMENSIONS ARE IN INCHES [MM]
 tolerances are 0.03 IN . [0.5 MM] unless otherwise noted.

[^5]: DIMENSIONS ARE IN INCHES [MM]
 tolerances are 0.03 IN . [0.5 MM] unless otherwise noted.

[^6]: DIMENSIONS ARE IN INCHES [MM]
 tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.

